Метод инверсии

Пусть нам дана некоторая кривая М и неподвижная точка К – начало или центр инверсии. Возьмём на кривой М точку А и на прямой КА определим точку А1 так, чтобы абсолютное значение КА·КА1 = к2, где к – есть постоянная длина, то при движении точки А по кривой М точка А1 опишет новую кривую N, которая называется обратной или инвертированной кривой.

Пусть у нас имеется фигура, состоящая из прямых и окружностей. Если эту фигуру инвертировать, то прямые и окружности превратятся в известные прямые и окружности, или в одни окружности, которые будут пересекаться под теми же углами, как и в данной фигуре. Если какая-нибудь точка данной фигуры представляла, например, вершину какого-нибудь угла, то в обратной фигуре она представит, вообще, точку пересечения окружностей, пересекающихся под тем же углом. Словом, обратная фигура удерживает до мельчайших подробностей своеобразное сходство с данной фигурой.

Зная отображённую фигуру и положение начала инверсии, нередко можно легко отгадать форму основной фигуры; что касается её размера, то для этого нужно знать степень инверсии.

Пример 1. Даны точка К две прямые АВ и ВС. Провести секущую КХY так, чтобы KX·KY = k2(k – есть данная длина).

Анализ. Искомая точка Y есть пересечение прямой ВА с прямой, инвертированной к ВС с центром инверсии К и степенью к2.

Построение.

опустим KL ^ BC;

на ВС отложим LN = k;

проведём MN ^ KN до пересечения KL в точке М;

окружность, описанная на диаметре МК встретит АВ в искомой точке.

Пример 2. Даны точки А, В и С. Через В провести прямую так, чтобы расстояния АХ и CY от этой прямой удовлетворяли равенству

АХ2 - СY2 = к2.

Решение. Из равенства (АХ + CY) (AX – CY) = k2 вытекает необходимость ввести в чертёж сумму и разность AX и CY. Поэтому переносим параллельно CY в С1Х и AC1·AY1 = k2. Если взять за центр инверсии А и за коэффициент к2, то С1 – есть точка окружности, инвертированной к прямой DY1; диаметр этой окружности равен АС1. Так как точки D и J соответственные, то AD·AJ = k2, что даёт возможность построить точку J. Тогда для определения точки С1 имеем JC1 ^ AD и окружность, диаметр которой равен АС.


Возраст от 12-15 лет. Умственные занятия Эмиля
Возраст от 12 15 лет Руссо считает возрастом обучения. У ребенка в это время много сил, и немного потребностей: этим неповторяемым соотношением и излишком сил и следует воспользоваться для занятий Но так как "наилучшее время для обучения" кратко, то надо знать, чем следует заниматься с ре ...

Описание программы опытно - экпериментального исследования и хода констатирующего эксперимента
Опытно-экспериментальное исследование проводилась в 3-А классе МОУСОШ №1 г. Зубцова. В классе 8 детей, 5 мальчиков и 3 девочки. На основе выдвинутой гипотезы о том, что применение учителем начальной школы комплекса развивающих, интеллектуальных, подвижных, ролевых игр в учебно-воспитательном процес ...

Развитие музыкальных способностей как педагогическое средство управления творческих способностей
Важнейшей в теории способностей является проблема их развития. С.А. Рубинштейн писал, что вопрос способностей должен быть слит с вопросом развития. Развитие человека в отличие от накопления опыта, овладения знаниями, умениями, навыками, - это и есть то, что представляет собой развитие как то новое, ...

Теория обучения в высшей школе

Теория обучения в школе

Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.

Школьный интернет-сайт

Школьный интернет-сайт

Инновационные процессы, идущие сегодня в системе образования наиболее остро ...

Разделы

Copyright © 2025 - All Rights Reserved - www.cerbas.ru