Турист проехал на автомашине 146 км, на пароходе на 50 км меньше, чем на автомобиле. Пешком турист прошел 12 км. Сколько километров проплыл турист на пароходе, если весь его путь составил 254км?
a) Измените условия, чтобы остались только те данные, которые нужны для решения задачи;
b) Измените вопрос и условия, чтобы в задаче не было лишних данных.
3. Задачи, решение которых требует поиска новых, еще неизвестных способов действий. К данным задачам относятся такие, которые, требуют творческой активности, эвристического поиска новых, неизвестных схем действий или необычной комбинации известных. При этом сюжетная задача должна отвечать учебным целям, главным образом, через правильное соотношение в ней новизны, ранее усвоенного материала и приемов его применения.
Например: «Турист отправился в путешествие, во время которого он ехал на автомашинах, плыл на пароходе и, конечно, шел пешком. На протяжении всего путешествия он наблюдал за очарованием природы и восхищался старинной архитектурой.
На основе приведенного текста составьте задачу так, чтобы ее решением было числовое выражение
a) 264 – (146 + (146 – 50))
b) 146 + (146 – 40) + (146 – 40) : 2»
Учащимся предлагают задачи с возрастающей степенью трудности, которые решаются последовательно – от первого к последнему. По количеству и качеству решенных задач можно судить о навыке ребенка, связанного с той или иной темой. Если ребенок не смог справиться с каким-либо заданием, то он должен объяснить, что вызвало у него затруднение. Это позволит преподавателю скорректировать свою обучающую деятельность относительно каждого ребенка.
Задачи и их решение занимают в обучении школьников весьма существенное место и по времени, и по их влиянию на умственное развитие ребенка.
Важно, чтобы учитель имел глубокие представления о текстовой задаче, о её структуре, умел решать такие задачи различными способами и передавал эти знания своим ученикам.
Одной из важнейших проблем обучения математике является формирование у учащихся умения решать текстовые задачи.
Ответ на требование задачи получается в результате ее решения. Решить задачу в широком смысле этого слова – это, значит, раскрыть связи между данными, указанными условием задачи, и искомыми величинами, определить последовательность применения общих положений математики (правил, законов, формул и т.п.), выполнить действия над данными задачи, используя эти общие положения, и получить ответ на требование задачи или доказать невозможность его выполнения.
Термин «решение задачи» широко применяется в математике. Этим термином обозначают связанные между собой, но все же не одинаковые понятия:
1) решением задачи называют результат, то есть ответ на требование задачи;
2) решением задачи называют процесс нахождения этого результата, то есть всю деятельность человека, решающего задачу, с момента начала чтения задачи до окончания решения;
3) решением задачи называют лишь те действия, которые производят над условиями и их следствиями на основе общих положений математики для получения ответа задачи [21, 62].
Решение задач – это работа несколько необычная, а именно умственная работа. А чтобы научиться какой-либо работе, нужно предварительно хорошо изучить тот материал, над которым придётся работать, те инструменты, с помощью которых выполняется эта работа.
Значит, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.
Основная особенность текстовых задач состоит в том, что в них не указывается прямо, какое именно действие (или действия) должно быть выполнено для получения ответа на требование задачи.
Итак, различают общий и частный подходы к решению задач. Названия не случайны. Частный подход связан с решением задач частных видов. Общий подход основан на том, что есть общее при решении любых задач – этапы решения, которые вычленил Д.Пойа. Количество этапов и их содержание примерно одинаково у разных авторов, что говорит об объективном характере существования соответствующих этапов в деятельности решающего. Базовым считаются четыре этапа решения задачи (см. рисунок №5).
![]() |
Адаптивная модель обучения
Такая модель дает возможность учителю перевести свою деятельность из режима информирования в режим консультирования и управления, а ученикам обеспечить возможность выбора пути движения с учетом своих возможностей и способностей. Продуктивность опыта заключается в том, что такая система работы позво ...
Эксперимент
Практические занятия по теме «Методы решения задач на построение». Цели: 1. Формирование знаний об этапах решения задач на построение и умений их осуществлять; Формирование представлений об основных методах решения задач на построение; Формирование навыков самостоятельной работы. План занятий: Этап ...
Дидактика, ее основные категории
Дидактика – часть педагогической науки, занимающаяся исследованием проблем обучения и образования. Само слово – дидактика – произошло от греческого didaktikos, что в переводе обозначает «поучающий». Первым этот термин использовал в своих сочинениях немецкий педагог Вольфганг Ратке, интерпретируя ег ...
Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.
Инновационные процессы, идущие сегодня в системе образования наиболее остро ...