Текстовые задачи в начальном курсе математики

Страница 4

Турист проехал на автомашине 146 км, на пароходе на 50 км меньше, чем на автомобиле. Пешком турист прошел 12 км. Сколько километров проплыл турист на пароходе, если весь его путь составил 254км?

a) Измените условия, чтобы остались только те данные, которые нужны для решения задачи;

b) Измените вопрос и условия, чтобы в задаче не было лишних данных.

3. Задачи, решение которых требует поиска новых, еще неизвестных способов действий. К данным задачам относятся такие, которые, требуют творческой активности, эвристического поиска новых, неизвестных схем действий или необычной комбинации известных. При этом сюжетная задача должна отвечать учебным целям, главным образом, через правильное соотношение в ней новизны, ранее усвоенного материала и приемов его применения.

Например: «Турист отправился в путешествие, во время которого он ехал на автомашинах, плыл на пароходе и, конечно, шел пешком. На протяжении всего путешествия он наблюдал за очарованием природы и восхищался старинной архитектурой.

На основе приведенного текста составьте задачу так, чтобы ее решением было числовое выражение

a) 264 – (146 + (146 – 50))

b) 146 + (146 – 40) + (146 – 40) : 2»

Учащимся предлагают задачи с возрастающей степенью трудности, которые решаются последовательно – от первого к последнему. По количеству и качеству решенных задач можно судить о навыке ребенка, связанного с той или иной темой. Если ребенок не смог справиться с каким-либо заданием, то он должен объяснить, что вызвало у него затруднение. Это позволит преподавателю скорректировать свою обучающую деятельность относительно каждого ребенка.

Задачи и их решение занимают в обучении школьников весьма существенное место и по времени, и по их влиянию на умственное развитие ребенка.

Важно, чтобы учитель имел глубокие представления о текстовой задаче, о её структуре, умел решать такие задачи различными способами и передавал эти знания своим ученикам.

Одной из важнейших проблем обучения математике является формирование у учащихся умения решать текстовые задачи.

Ответ на требование задачи получается в результате ее решения. Решить задачу в широком смысле этого слова – это, значит, раскрыть связи между данными, указанными условием задачи, и искомыми величинами, определить последовательность применения общих положений математики (правил, законов, формул и т.п.), выполнить действия над данными задачи, используя эти общие положения, и получить ответ на требование задачи или доказать невозможность его выполнения.

Термин «решение задачи» широко применяется в математике. Этим термином обозначают связанные между собой, но все же не одинаковые понятия:

1) решением задачи называют результат, то есть ответ на требование задачи;

2) решением задачи называют процесс нахождения этого результата, то есть всю деятельность человека, решающего задачу, с момента начала чтения задачи до окончания решения;

3) решением задачи называют лишь те действия, которые производят над условиями и их следствиями на основе общих положений математики для получения ответа задачи [21, 62].

Решение задач – это работа несколько необычная, а именно умственная работа. А чтобы научиться какой-либо работе, нужно предварительно хорошо изучить тот материал, над которым придётся работать, те инструменты, с помощью которых выполняется эта работа.

Значит, для того чтобы научиться решать задачи, надо разобраться в том, что собой они представляют, как они устроены, из каких составных частей они состоят, каковы инструменты, с помощью которых производится решение задач.

Основная особенность текстовых задач состоит в том, что в них не указывается прямо, какое именно действие (или действия) должно быть выполнено для получения ответа на требование задачи.

Итак, различают общий и частный подходы к решению задач. Названия не случайны. Частный подход связан с решением задач частных видов. Общий подход основан на том, что есть общее при решении любых задач – этапы решения, которые вычленил Д.Пойа. Количество этапов и их содержание примерно одинаково у разных авторов, что говорит об объективном характере существования соответствующих этапов в деятельности решающего. Базовым считаются четыре этапа решения задачи (см. рисунок №5).

Страницы: 1 2 3 4 5 6 7


Ремесло и образование человека
Но рекомендуя занятия ремеслом, Руссо не опускает из вида и общечеловеческой цели воспитания. "Мы не только ремесленные подмастерья, - мы человеческие подмастерья", - говорит Руссо - и, когда мы будем учиться столярному ремеслу, "цель наша не столько в том, чтобы научиться столярному ...

Количественный и качественный анализ
По проведенным трем методикам можно рассмотреть следующие закономерности: По результатам всех методик можно сделать вывод, что уровень сформированности внимания у детей с задержкой психического развития отличается от уровня сформированности внимания у детей с нормальным развитием психических процес ...

Модель воспитательной деятельности учителя с педагогически запущенными учащимися в процессе нравственного воспитания
Педагог, осуществляющий перевоспитание педагогически запущенных школьников, выполняет следующие функции: диагностическая изучение всего контингента учащихся, выявление лиц, которых можно отнести к педагогически запущенным, определение их психологического типа, степени педагогической запущенности, е ...

Теория обучения в высшей школе

Теория обучения в школе

Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.

Школьный интернет-сайт

Школьный интернет-сайт

Инновационные процессы, идущие сегодня в системе образования наиболее остро ...

Разделы

Copyright © 2025 - All Rights Reserved - www.cerbas.ru