Практические занятия по теме «Методы решения задач на построение».
Цели: 1. Формирование знаний об этапах решения задач на построение и умений их осуществлять;
Формирование представлений об основных методах решения задач на построение;
Формирование навыков самостоятельной работы.
План занятий:
|
Этапы изучения темы |
Тема занятия |
Количество часов |
|
1. Пропедевтический этап |
Основы конструкти- вной геометрии. Ос- новные геометричес- кие построения. |
2 |
|
2. Систематический этап |
1. Метод пересечения фигур 2. Алгебрaический метод 3. Метод параллель ного переноса 4. Метод подобия |
5 |
|
3. Итоговый этап |
Самостоятельная ра- бота |
1 |
Практические занятия по теме «Методы решения задач на построение»
Занятие 1
Тема: Основы конструктивной геометрии
Цели: 1. Ознакомление с основными требованиями конструктивной геометрии;
Формирование системы аксиом инструментов построения: линейки, циркуля, двусторонней линейки, прямого угла.
Оборудование:
Рассмотренные выше инструменты;
Плакаты, отражающие основные свойства конструктивной геометрии.
Методы и средства:
Лекция с включённой беседой;
Параллельная работа учителя у доски, а учащихся в тетради;
Самостоятельная работа учащихся в тетради.
План-коспект занятия:
Организационный момент.
Вступительная беседа и объяснение нового материала.
Преподаватель: Данные занятия затрагивают основные моменты очень интересного раздела геометрии, который называется конструктивная геометрия. Как раздел общей геометрии, она изучает геометрические построения. В конструктивной геометрии существуют основные требования.
Каждая данная фигура построена;
Если построены две или более фигуры, то построено их соединение;
Если две фигуры построены, то можно установить является ли их пересечение пустым множеством;
Если разность двух фигур не является пустым множеством, то эта разность построена;
Можно построить точку, заведомо принадлежащую или не принадлежащую построенной фигуре.
Преподаватель: Каждая задача на построение состоит из требования построить ту или иную фигуру при помощи данных соотношений между элементами искомой фигуры и элементами данной фигуры, используя данный набор инструментов. Мы будем рассматривать построения при помощи циркуля и линейки.
Таким образом, каждая построенная фигура, удовлетворяющая требуемым условиям задачи, называется решением задачи. Найти решение задачи на построение, – значит, свести её к конечному числу из некоторых элементарных построений, то есть указать пошаговую последовательность построений, после выполнения которых мы получим искомую фигуру.
Решить задачу на построение, – значит найти все её решения. А теперь рассмотрим элементарные построения (см. Глава 1.,§ 1,2).
Преподаватель: На уроках геометрии вы уже выполняли некоторые простые задачи на построение. Давайте вспомним какие.
Учащиеся: Деление отрезка пополам, деление угла пополам, построение треугольника по двум сторонам и углу между ними, по трём сторонам, подвум углам и прилежащей стороне.
Преподаватель: Правильно. Попытайтесь самостоятельно выполнить эти построения.
Каждому ученику предлагается задача на построение.
Предлагаемые задачи:
Разделите отрезок пополам.
Разделите угол пополам.
Постройте треугольник по двум сторонам и углу между ними.
Постройте треугольник по трём сторонам.
Постройте треугольник по двум углам и прилежащей стороне.
Домашнее задание: Выполнить нерассмотренные задачи на построение.
Занятие 2
Тема: Основы конструктивной геометрии. Основные геометрические построения.
Цели: 1. Формирование представлений о сущности решения задачи на построение;
2. Закрепление умений решать основные задачи на построение (14 задач).
Оборудование: Циркуль, линейка.
Методы и средства:
Лекция с включённой беседой;
Параллельная работа учителя у доски, а учащихся в тетради;
Самостоятельная работа учащихся в тетради.
План-конспект занятия:
Организационный момент.
Проверка домашнего задания: на карточках дать по одному основному построению.
Вопросы:
Что значит найти решение задачи на построение?
Что значит решить задачу?
Какие элементарные построения вы знаете?
Какие основные задачи на построение вы знаете?
Объяснение нового материала:
Диагностика уровня сформированности умений младших школьников решать задачи
Практическое исследование по теме работы было проведено в период преддипломной практики с 26 января по 5 марта 2010 года. Базой практики явилась МОУ СОШ №57 города Краснодара. В качестве экспериментального был выбран 3 «А» класс. Учитель –Каргаполова Татьяна Ивановна (стаж работы 18 лет). Обучение ...
Взаимодействие устной и письменной речи
Известно, что между устной и письменной речью имеется много общего: в основном используется один и тот же словарь, одни и те же способы связи слов и предложений. Характерно, что на уровне 1200 наиболее употребительных слов принципиальных различий между разговорным и литературно-книжным списком слов ...
Коррекционно-воспитательная работа со школьниками, имеющими нарушения речи
Формирующий эксперимент проводился в том же учебном заведении с экспериментальной группой детей в количестве 6 человек. Формирующий эксперимент также проводился и с контрольной группой детей, однако методологической его базой явились традиционные методики формирования правильного звукопроизношения ...
Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.
Инновационные процессы, идущие сегодня в системе образования наиболее остро ...