Методические рекомендации

Страница 5

На кружковых занятиях школьников обязательно надо учить ориентироваться в незнакомых ситуациях и областях, решать задачи на незнакомую фабулу, с непривычным для них математическим содержанием. Темп проведения кружковых занятий должен постепенно возрастать. Нецелесообразно на занятиях кружка проводить систематическое повторение ранее пройденных вопросов, так как основная задача кружковой работы - развитие творческого подхода, повышение уровня математической подготовки, но не сообщение учащимся определенных математических фактов, подлежащих обязательному усвоению. Учитель на занятиях не должен стеснять инициативы и находчивости учащихся в поисках решения задачи, облегчения вычислений. Кроме того, для занятий необходимо подбирать такие задания, которые представляют собой развитие типовых задач, предусмотренных или непредусмотренных программой.

К занятию учителю необходимо готовиться. Следует обдумывать план каждого занятия кружка, учитывая разнообразие методов работы с учащимися. Включать в этот план отдельные фрагменты бесед учителя, рассказов, выступлений учащихся с короткими сообщениями по истории математической теории, биографии ученых, интересными решениями задач, сообщениями о самостоятельных “исследованиях” и так далее. Это поможет обобщению опыта внеклассной работы, систематическому улучшению ее организации и методики.

Учителю, решившему создать на базе своего класса математический кружок, не обязательно продумывать методику работы самому. В этом могут помочь методические пособия, разработанные различными авторами. Однако, как правило, в них описана система работы лишь на один учебный год. Учителю в таком случае трудно обеспечить преемственность кружковых занятий. Одним из немногих авторов, решивших эту проблему, является В. П. Труднев (95). Мы представляем примерное тематическое планирование кружковых занятий с 1 по 3 класс.

Цель и характер проведения математических вечеров (утренников) несколько отличны от обычных целей и привычного образа действий, когда учащийся “занимается” математикой ¾ решает задачи, доказывает теоремы, выполняет геометрические построения или является зрителем и слушателем литературно-художественного вечера.

Прежде всего, на таких вечерах, как правило, присутствуют не только те учащиеся, которые проявили свои способности в математике, но и школьники, которые такого интереса к математике еще не имеют, а их успехи по этому предмету весьма скромны. Степень их участия в математическом вечере зачастую ограничивается лишь таким видом деятельности, который прямо не связан с предметом: подготовкой оформления вечера, выпуском газеты, исполнением ролей в инсценировках, подготовкой билетов и премий, декламацией стихотворений, раздачей материала для игры и так далее.

Организация математических вечеров для школьников младшего возраста имеет своей целью:

¾ заинтересовать предметом;

¾ представить серьезные математические идеи в занимательной форме;

¾ вызвать удивление, желание помечтать;

¾ вызвать стремление самому сформулировать и решить задачу.

Конечно, нужно при этом помнить, что чрезмерное увлечение занимательной стороной математики не даст желаемого результата. На одних шутках и внешних эффектах не привьешь учащемуся настоящего и устойчивого интереса к занятиям математикой.

Ценность математических вечеров не только и не, сколько в их математическом содержании, сколько в характере деятельности на этих вечерах. Это вечер, на котором дети фантазируют, учатся рассуждать, правильно мыслить и говорить. Таким образом, время, проведенное на математическом вечере, для учащихся работает не на одну только математику, а имеет общекультурную ценность и воспитательное значение.

Формы математических вечеров бывают разными. Они могут проходить в виде

¾ викторин,

¾ КВНов,

¾соревнований одной группы учащихся с другой,

¾утренников.

При этом содержание вечера не может ограничиваться одними лишь математическими вопросами. Математическая тематика предстает перед учащимися в игровой форме ¾ в виде ребусов, кроссвордов, викторин, занимательных вопросов и ответов, загадок, софизмов и тщательно замаскированных ошибок в рассуждениях, которые учащиеся должны обнаружить, и другие.

Занятия такого вида вызывают острый интерес у учащихся, дают им возможность вдоволь пофантазировать, опираясь как на интуицию и здравый смысл, так и на рассуждения, подчиняющиеся логике, принятой в математических доказательствах.

Страницы: 1 2 3 4 5 6 7 8 9 10


Цель, задачи и содержание констатирующего эксперимента
Цель исследования: обследование предметного словаря у детей дошкольного возраста с ОНР. Задачи: 1. Изучение психолого-педагогических особенностей детей с ОНР (II уровень). 2. Обследование сформированности словаря существительных у детей с ОНР (II уровень). Базой для нашего исследования стал МАДОУ № ...

Анализ современных программ по окружающему миру
Проанализируем учебные книги разных периодов. Н.И. Харисова в своей работе: «Генезис учебной книги для детей как источник познания» анализирует средства ознакомления детей с окружающим миром. Схема 1. Средства ознакомления с окружающим миром В связи с необходимостью развития экономики и активного о ...

Динамика развития нравственных представлений у детей с нарушениями слуха старшего дошкольного возраста
Цель экспериментальной работы – выявление динамики развития нравственных представлений у слабослышащих детей старшего дошкольного возраста. Для достижения цели нами были использованы те же методики, что и на констатирующем этапе. В ходе исследования получили следующие результаты. Уровни развития нр ...

Теория обучения в высшей школе

Теория обучения в школе

Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.

Школьный интернет-сайт

Школьный интернет-сайт

Инновационные процессы, идущие сегодня в системе образования наиболее остро ...

Разделы

Copyright © 2025 - All Rights Reserved - www.cerbas.ru