В этом параграфе представлена общая структура математических способностей в школьном возрасте по В.А. Крутецкому. Она рассматривается исходя из основных этапов решения задач: I. получение математической информации; II. переработка математической информации; III. хранение математической информации. Каждому из этапов I - III соответствует одна или несколько математических способностей. Приведем описание каждой математической способности с выделением действий, которые присущи каждой способности и описание протоколов решения задач способными и неспособными учениками, описанные Вадимом Андреевичем Крутецким в книге [8].
Способности, необходимые для получения математической информации
Способность к формализованному восприятию математического материала, схватывания формальной структуры задачи
Характеристика способности. Эта математическая способность проявляется в стремлении к своеобразной формализации структуры математического материала в процессе его восприятия. Под формализацией понимается быстрое «схватывание» в конкретной задаче, в математическом выражении их формальной структуры, когда все содержательное (числовые данные, конкретное содержание) словно выпадает и остаются чистые соотношения между показателями, характеризующие принадлежность задачи или математического выражения к определенному типу. Формализованное восприятия – это своего рода обобщенное восприятие функциональных связей, отдельных от предметной и числовой формы, когда в конкретном воспринимается его общая структура.
Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действия:
выделять различные элементы в математическом материале задачи;
давать элементам математического материала задачи различную оценку;
систематизировать элементы математического материала задачи;
объединять элементы математического материала задачи в комплексы;
отыскивать отношения и функциональные зависимости элементов математического материала задачи.
Первые три действия направлены на восприятия математического материала задачи аналитически, другие же направлены на синтетическое восприятие математического материала задачи.
Особенности выполнения I этапа решения задач учащимися, обладающие этой способностью. Для выяснения особенности восприятия математического материала В.А. Крутецкий используется серия «Системы однотипных задач». Эта серия рассчитана на учащихся, еще незнакомых с формулами сокращенного умножения. Исследовалось, как учащиеся могут выделить основное, главное, существенное с точки зрения типа задачи, отвлечься от несущественного, второстепенного, от деталей. При помощи этой серии исследуется также процесс обобщения – подведение объектов под только что, сформировавшееся в своей основе понятия.
Рассмотрим решение одного из тестов серии «Системы однотипных задач» направленного на выяснения овладения этой способностью способными к математике и неспособными к математике учащимися. Серия представляет собой своеобразную «лестницу задач» одного и того же типа, от наиболее простой к весьма сложной. Выясняется, как сумеет испытуемый доказать, что данная задача, несмотря на ее внешнее отличие, принадлежит к тому же самому типу, и как, учитывая конкретные особенности задачи, он собирается решать ее по общей схеме решения задач установленного им типа.
Приведем наглядный пример, как справлялись с одной из задач этой серией способные к математике ученики и неспособные.
Способные ученики при решении задачи на применение формулу сокращенного умножения (a+b)2. Они легко выделяют существенные для данного типа моменты (сумма двух алгебраических выражений в квадрате), равно как и несущественные для данного типа (конкретная величина и характер алгебраических выражений, составляющие число a и b). Другими словами имела место своеобразная формализация структуры задачи при ее восприятии, когда задача (например, 6ах+1/2by)2 «схватывалась в такой форме: (+)2=.
Социальное общение – фактор социализации личности
Для того чтобы узнать, каково социальное общение старшеклассников, в чем его суть, каковы контакты, протекание процесса конфликта и пути выхода из него, необходимо, прежде всего, определить, что такое общение, что оно формирует и к чему приводит? Общение является одной из составляющих процесса соци ...
Тестирование эмоционального состояния боксеров 12-13 лет
В наших исследованиях мы попытались выяснить, какую роль может сыграть интерес спортсменов занимающихся боксом при выполнении силовых упражнений на их эмоциональное состояние, которое они испытывают. Исходя из этого, нами было проведено исследование изменения эмоционального состояния подростков 12- ...
Теорема о сумме углов треугольника
Эта теорема сформулирована и в учебнике Атанасяна Л.С. [3,с.66], и в учебнике Погорелова А.В. [14,с.54-55]. Доказательства этой теоремы в этих учебниках существенно не отличаются, а поэтому приведем ее доказательство, например, из учебника Погорелова А.В. Теорема: Сумма углов треугольника равна 180 ...
Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.
Инновационные процессы, идущие сегодня в системе образования наиболее остро ...