В этом параграфе представлена общая структура математических способностей в школьном возрасте по В.А. Крутецкому. Она рассматривается исходя из основных этапов решения задач: I. получение математической информации; II. переработка математической информации; III. хранение математической информации. Каждому из этапов I - III соответствует одна или несколько математических способностей. Приведем описание каждой математической способности с выделением действий, которые присущи каждой способности и описание протоколов решения задач способными и неспособными учениками, описанные Вадимом Андреевичем Крутецким в книге [8].
Способности, необходимые для получения математической информации
Способность к формализованному восприятию математического материала, схватывания формальной структуры задачи
Характеристика способности. Эта математическая способность проявляется в стремлении к своеобразной формализации структуры математического материала в процессе его восприятия. Под формализацией понимается быстрое «схватывание» в конкретной задаче, в математическом выражении их формальной структуры, когда все содержательное (числовые данные, конкретное содержание) словно выпадает и остаются чистые соотношения между показателями, характеризующие принадлежность задачи или математического выражения к определенному типу. Формализованное восприятия – это своего рода обобщенное восприятие функциональных связей, отдельных от предметной и числовой формы, когда в конкретном воспринимается его общая структура.
Действия, представленные за данной способностью. При наличии данной математической способности школьники выполняют следующие действия:
выделять различные элементы в математическом материале задачи;
давать элементам математического материала задачи различную оценку;
систематизировать элементы математического материала задачи;
объединять элементы математического материала задачи в комплексы;
отыскивать отношения и функциональные зависимости элементов математического материала задачи.
Первые три действия направлены на восприятия математического материала задачи аналитически, другие же направлены на синтетическое восприятие математического материала задачи.
Особенности выполнения I этапа решения задач учащимися, обладающие этой способностью. Для выяснения особенности восприятия математического материала В.А. Крутецкий используется серия «Системы однотипных задач». Эта серия рассчитана на учащихся, еще незнакомых с формулами сокращенного умножения. Исследовалось, как учащиеся могут выделить основное, главное, существенное с точки зрения типа задачи, отвлечься от несущественного, второстепенного, от деталей. При помощи этой серии исследуется также процесс обобщения – подведение объектов под только что, сформировавшееся в своей основе понятия.
Рассмотрим решение одного из тестов серии «Системы однотипных задач» направленного на выяснения овладения этой способностью способными к математике и неспособными к математике учащимися. Серия представляет собой своеобразную «лестницу задач» одного и того же типа, от наиболее простой к весьма сложной. Выясняется, как сумеет испытуемый доказать, что данная задача, несмотря на ее внешнее отличие, принадлежит к тому же самому типу, и как, учитывая конкретные особенности задачи, он собирается решать ее по общей схеме решения задач установленного им типа.
Приведем наглядный пример, как справлялись с одной из задач этой серией способные к математике ученики и неспособные.
Способные ученики при решении задачи на применение формулу сокращенного умножения (a+b)2. Они легко выделяют существенные для данного типа моменты (сумма двух алгебраических выражений в квадрате), равно как и несущественные для данного типа (конкретная величина и характер алгебраических выражений, составляющие число a и b). Другими словами имела место своеобразная формализация структуры задачи при ее восприятии, когда задача (например, 6ах+1/2by)2 «схватывалась в такой форме: (+)2=.
Влияние экспериментальных занятий на показатели физической подготовленности
юных боксеров
Изменения результатов в жиме лёжа. До начала контрольно-педагогических испытаний все боксеры 12-13 лет выполняли специальную разминку в течение 10-12 мин. Особенно тщательно разминались мышцы плечевого пояса, поясницы и спины. Все испытуемые начинали выполнение контрольных упражнений с такого веса ...
Понятие художественного творчества
Творчество рассматривается учеными как человеческая деятельность высшего уровня по познанию и преобразованию окружающего природного и социального мира. В процессе творческой деятельности, что особенно важно, изменяется и сам человек (формы и способы его мышления, личностные качества): он становит ...
Классификация основных характеристик компьютерных программ
Компьютер гарантирует конфиденциальность. Ученик знает, какие ошибки он делает, у него нет страха, что кто-то узнает о его ошибках, и он получит неудовлетворительную оценку. Также компьютер имеет большие методические достоинства. Он моментально реагирует на введенную информацию, т.e. компьютер обес ...
Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.
Инновационные процессы, идущие сегодня в системе образования наиболее остро ...