«Мысленный эксперимент …совершается посредством специально сконструированных идеальных объектов, которые не существуют натурально» [17]. Поскольку мы определили геометрический объект, как идеальную сущность реальной составляющей вещи, то любое действие по изменению и преобразованию такого объекта можно было бы рассматривать как мысленный эксперимент. В этом смысле в геометрии: «…мысленный эксперимент …нельзя выделить, как отдельную деятельность…она является …переходом от представления математического объекта – эйдоса, идеи к формально-логической структуре математической теории» [14, с. 20].
Результаты такого мысленного эксперимента должны: «…приобрести теоретическое значение» [17], выражаемое в теоремах геометрии, аксиоматическое построение которой требует их «жесткого» доказательства, согласно канонам дедуктивной логики.
Мысленный эксперимент присутствует в самом геометрическом объекте, он неотделим от него. Ведь понимание таких основных геометрических понятий, как «точка», «прямая» уже требует идеализации и абстрагирования, а последующее их «собирание» в геометрическую фигуру – мысленного конструирования. Дальнейшее оперирование такими мысленными конструкциями приводят к появлению различных фактов – геометрических теорем.
«В процессе открытия геометрических истин [теорем] несомненно использовались индукция и мысленный эксперимент…Возникновение собственно научной геометрии связанно с дедуктивной логикой, выступающей в форме анализа и синтеза, причем анализ применялся не только как метод доказательства, но и как метод открытия теорем» [19, с. 363].
Анализируя аксиоматическое построение «Начал», Черняк пишет о двойственной роли евклидовых аксиом: с одной стороны аксиомы предоставляют собой логические правила вывода, с другой – аксиомы являются общими правилами или законами геометрической конструкции. Они задают руководящие принципы (например, принцип равенства), без которых невозможно решать задачи на построение. «Отсюда …предположение, что геометрия в своей предаксиоматической, интуитивной стадии использовало то, что впоследствии было названо аксиомами, в качестве интуитивно ясных принципов конструкции» [19, с. 317].
Такой подход Черняка к евклидовым «Началам» можно назвать «конструктивно-экспериментальным», где любое конструирование геометрической фигуры – есть мысленный эксперимент (см. введение, с.3). «Мысленный эксперимент имеет дело с идеализированными схемами эмпирического опыта, а его основной метод состоит в производстве различного рода вариаций, позволяющих мысленно обозреть все возможные случаи» [19, с. 353] – пишет Черняк.
По его мнению, греки отвергли экспериментальный способ обоснования геометрии потому, что его идея была несовместима с духом греческой науки и философии. Ведь мысленный эксперимент подразумевает движение (в воображении), а оно: «…есть нечто вторичное, оно предполагает материю, хотя и «интеллигибельную»» [19, с. 361]. Вычерчивание же линий на папирусе, песке или бумаге, есть уже чувственное подобие движения в фантазии.
Все что возникает подвержено изменению и исчезновению, а это противоречило представлениям греков о неизменности истинного знания. Воззрение древних было такого, что они презирали эксперимент и верили, что бытие можно познать посредством чистого мышления. «Посредством чувственного восприятия нельзя знать общее…ибо чувственно необходимо воспринимается отдельное, между тем как научное знание есть познание общего» [19, с. 361].
Исходя из выше изложенного, можно предположить, что мысленный эксперимент является своего рода «средой» существования геометрического объекта, где роль особых условий выполняют аксиомы, а внутренняя упорядоченность его «элементов» - роль системы связей. Конструирование геометрического объекта и оперирование с ним в такой «среде» ведет к открытию геометрического факта - теоремы.
В структуре геометрического доказательства практически всегда используются такие конструкции, как «дополнительные построения», выражаемые в словах типа: «проведем – достроим – поместим». После чего, используя дедуктивные рассуждения, выводится доказываемый факт. В таких «дополнительных построениях» по сути, свернут акт мысленного эксперимента, позволяющего схватить идею открытия теоремы, а значит и идею доказательства.
В современных учебниках по геометрии (Погорелов, Атанасян) идеи таких «дополнительных построений» не раскрываются, а их необходимость понимается лишь только тогда, когда доказательство теоремы завершено.
«Сконструировав» открытие теоремы как некоторого мысленного эксперимента с геометрической фигурой и изложив ее доказательство с использованием выделенной Библером, и отмеченной Давыдовым, структуры мысленного эксперимента (см. с. 24), мы предполагаем, что у школьника может произойти оформление «для себя» идеи формально-дедуктивного доказательства теоремы.
Тестирование эмоционального состояния боксеров 12-13 лет
В наших исследованиях мы попытались выяснить, какую роль может сыграть интерес спортсменов занимающихся боксом при выполнении силовых упражнений на их эмоциональное состояние, которое они испытывают. Исходя из этого, нами было проведено исследование изменения эмоционального состояния подростков 12- ...
Сравнение инновационного и традиционного подходов к
построению процесса обучения
Понятие «инновация» относится не просто к созданию и распространению новшеств, но к таким изменениям, которые носят существенный характер, сопровождаются изменениями в образе деятельности, стиле мышления. В этой работе в качестве инновационных рассматриваются модели, которые преобразуют характер об ...
Организация воспитательной
работы в ГОУНПО «Профессиональный
лицей №»
В практической части своей курсовой работы я решила рассмотреть организацию воспитательной работы на примере одного из учреждений начально-профессионального образования. Для этого я обратилась в ГОУ НПО «Профессиональный лицей № », который находится по адресу: ул. Когда я пришла в лицей, мне предло ...
Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.
Инновационные процессы, идущие сегодня в системе образования наиболее остро ...