О возможностях формирования математических способностей в курсе «Начала алгебры»

Комплексная педагогика » Формирование математических способностей при изучении математики в деятельностном подходе » О возможностях формирования математических способностей в курсе «Начала алгебры»

Страница 5

Формирование способности к быстрому и широкому обобщению математических объектов

Перейдем к следующей математической способности – способность к быстрому и широкому обобщению математических объектов. Проверку будем осуществлять таким же образом, как и в предыдущем анализе.

Способность к обобщению математического материала рассматривается в двух планах: 1) как способность человека увидеть в частном, конкретном уже известном ему общее (подведение частного случая под известное общее понятие) и 2) способность увидеть в единичном, частном пока еще неизвестное общее (вывести общее из частных случаев, образовать понятие). Одно дело – увидеть возможность применение к данному частному случаю уже известной ученику формулы, другое – на основание частных случаев вывести формулу, еще неизвестную ученику.

Рассмотрим задание из темы «Теория делимости» курса «Начала алгебры», которое, по нашему мнению, позволяет формировать эту математическую способность.

Задание. «Как быстро (не производя вычисления) определить, кратна ли трем сумма 3798+222?».[4]

Задача решается при помощи использования свойств отношений делимости.

Так как действие «использование свойств отношений делимости» можно соотнести с действием «обобщения типа решения», «обобщения схемы доказательства, рассуждения» (что применить), то можно сказать, что данная задача позволяет формировать математическую способность - способность к быстрому и широкому обобщению математических объектов.

Ниже в таблице №3 приведены задания из темы «Теория делимости» курса «Начала алгебры», которые, по нашей оценке, позволяют формировать эту математическую способность.

Таблица 3

Математическая способность

Действие, присущие способности

Тип задания

Образец задания

Способность к быстрому и широкому обобщению математических объектов.

видят сходную ситуацию в сфере числовой и знаковой символики (где применить);

владеют обобщенным типом решения, обобщенной схемой доказательства, рассуждения (что применить).

1.Даны некоторые объекты теории чисел, для которых справедливы некоторые свойства. Сформулируйте утверждение, которое кажется вам верным. Проверьте, справедливо ли оно для более широкого класса объектов.

2. В данных утверждениях о числах замените числа буквами. Запишите полученные утверждения.

3.Установите делимость числа на а, если известны признаки делимости на делители а. Сформулируйте соответствующее утверждение.

1.Постройте примеры, показывающие, что можно (или нельзя) без изменения распространить признаки делимости для двузначных чисел в произвольной системе счисления на числа с произвольным количеством цифр в записи. Сформулируйте утверждение, которое кажется вам верным.

2. Замените в следующих утверждениях числа буквами:

(а) 83562 и 26382 (8356+ 2638)2;

3.Сформулируйте утверждение о делимости чисел 121212, 2424242, 444 на 6.

Вывод: так как такие задачи в материале темы «Теория делимости» курса «Начала алгебры» встречаются систематически и условия задач постепенно усложняются, то можно говорить, что способность к быстрому и широкому обобщению математических объектов формируется.

Также при анализе задачного материала темы «Теория делимости» курса «Начала алгебры» были выявлены задачи, которые направлены на формирование двух других математических способностей: 1) гибкость мыслительных процессов в математической деятельности, 2) способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли.

Ниже в таблицах №4, 5 приведены задания из курса «Начала алгебры» темы «Теория делимости», которые, по нашей оценке, направлены на формирование этих математических способностей.

Страницы: 1 2 3 4 5 6 7


Газетные штампы
Как уже отмечалось выше, для того чтобы максимально ускорить и упростить чтение и понимание газетного текста, в языке газетных сообщений употребляются слова и словосочетания, повторяющиеся из номера в номер. Они составляют своего рода терминологию газетного стиля и по сути представляют собой газетн ...

Основные понятия культуры поведения детей дошкольного возраста
Понятие культуры поведения дошкольника можно определить, как совокупность полезных для общества устойчивых форм повседневного поведения в быту, в общении, в различных видах деятельности. В содержании культуры поведения дошкольников можно условно выделить следующие компоненты: культура деятельности, ...

Изучение эффективности воспитательной работы и воспитательной системы в учреждениях НПО
Итак, как было сказано выше, роль начального профессионального учебного заведения не ограничивается только образованием. Большое значение имеет и воспитательная работа. Если образовательный процесс можно как-то оценить, например, система баллов, то оценка эффективности воспитательной работы всегда ...

Теория обучения в высшей школе

Теория обучения в школе

Задачи, стоящие перед высшей школой, требуют ее всестороннего совершенствования.

Школьный интернет-сайт

Школьный интернет-сайт

Инновационные процессы, идущие сегодня в системе образования наиболее остро ...

Разделы

Copyright © 2025 - All Rights Reserved - www.cerbas.ru